Blog

  • VideoSesDonustur

    Video Sesini Dönüştür

    Video Kodlayıcı Telegram Botu
    Örnek Bot »
    Hata Bildir | Özellik İste


    Bot Hakkında

    Telegram Logo

    Telegram’ın ses formatına destek vermediği hiç sesi çıkmayan videoları FFmpeg aracılığıyla uygun formata kodlar ve bunu herhangi bir kalite kaybı olmadan yapar.

    Ortam Değişkenleri:

    Ortam değişkenlerini ayarlayın ve bunları config.env içine ekleyin.

    • API_IDhttps://my.telegram.org‘da bir uygulama oluşturarak edinin.
    • API_HASHhttps://my.telegram.org‘da bir uygulama oluşturarak edinin.
    • BOT_TOKENhttps://t.me/BotFather adresinden bir bot oluşturarak edinin.
    • SUDO_USERS – Yetkili kullanıcının ID numarasını ekleyin. Birden fazla kullanıcı için ayırıcı olarak boşluk kullanın.
    • DOWNLOAD_DIR – (İsteğe bağlı) İndirilen dosyaları saklamak için geçici indirme dizini. Varsayılan: “downloads/”

    Kodlama Biçimini Yapılandırma:

    FFmpeg profilini değiştirmek isterseniz şuradan ayarlayın: ffmpeg.py

    Colab

    Open In Colab

    Linux’ta Docker ile Kurulum:

      1. Python ve Docker’ı kurun.
    sudo snap install docker
    sudo apt install python3
    
      1. Repo’yu Klonlayın.
    git clone https://github.com/Turkce-Botlar-Sohbet/VideoSesDonustur
    cd VideoSesDonustur
    
      1. Yapılandırma Dosyasını Ayarlayın.
    nano config.env
    
      1. Docker Görüntüsü Oluşturun.
    sudo docker build . -t videosesdonustur
    
      1. Botu Çalıştırın.
    sudo docker run videosesdonustur
    

    Telif Hakkı ve Lisans

    Visit original content creator repository https://github.com/Turkce-Botlar-Sohbet/VideoSesDonustur
  • app-skus

    Warning

    This repository is no longer maitained. We moved all our Dashboard applications to a brand new dashboard-apps monorepo. This allows you to run them all locally effortlessly.

    App SKUs

    Commerce Layer application for managing Skus.

    Any Commerce Layer account comes with a hosted version of this application, as part of the Dashboard hub, and it is automatically enabled for admin users. An admin can then enable the app for other organization members giving each member full or read-only access.

    It’s possible to fork this app and add it to your Dashboard hub, in order to customize every part of the code and start using your own and self-hosted version.

    Table of contents

    Getting started

    You need a local Node.JS (version 18+) environment and some React.JS knowledge to customize the app code.

    1. Fork this repository (you can learn how to do this here).

    2. Clone the forked repository like so:

    git clone https://github.com/<your username>/app-skus.git && cd app-skus
    1. Set your environment by creating a new /src/app/.env.local file starting from /src/app/.env (not required for local development).

    2. Install dependencies and run the development server:

    pnpm install
    pnpm dev
    
    1. The app will run in development mode at http://localhost:5173/. In order to authenticate the app, you need to add an integration access token as URL query param. Example: http://localhost:5173/?accessToken=<integration-token-for-local-dev>. That access token is only required (and will work only) for development mode. In production mode the Commerce Layer Dashboard hub will generate a valid access token, based on the current user.

    2. Modify the app to satisfy your requirements. All our Dashboard apps are built using a shared component library @commercelayer/app-elements. You can browse the official documentation to discover more about this topic.

    3. Deploy the forked repository to your preferred hosting service. You can deploy with one click below:

    Deploy to Netlify Deploy to Vercel

    1. Complete the configuration in the Dashboard hub by setting your app URL.

    Running on Windows

    Read more

    Need help?

    1. Join Commerce Layer’s Slack community.

    2. Create an issue in this repository.

    3. Ping us on Twitter.

    License

    This repository is published under the MIT license

    Visit original content creator repository https://github.com/commercelayer/app-skus
  • rust-trader-public

    RUST ALGOTRADER

    A decently performant algorithmic trading system for crypto exchanges, built from the ground up as a personal project to help me and my friend explore fintech and learn Rust. This project is a demonstration version of a private endeavour and has had content redacted.
    The implementation of insightful analysis and profitable strategies is left as an exercise to the reader.

    Quickstart (for Binance testnet)

    1. Install Rust and Cargo
    2. Make Binance testnet or live account
    3. Make a real environment file from either shell/batch sample and exclude it in .gitignore
    4. Populate env file with API keys
    5. Run either .env.bat or source .env.sh
    6. Run cargo run --release

    Further info can be found in directory READMEs.
    You may need to delete rust-toolchain.toml and manually set rust to nightly in CLI depending on your environment.

    DISCLAIMER

    I have no professional experience in algotrading, and am entirely self taught. This project is incomplete, lacks comprehensive testing, and contains unresolved bugs. I offer no assurance that the tools and systems I have developed are up to any known standard or in line with any obvious convenience.

    Use at your own risk.

    Visit original content creator repository
    https://github.com/MikeECunningham/rust-trader-public

  • Talking-Head

    Talking Head

    AI Talking Head: create video from plain text or audio file in minutes, support up to 100+ languages and 350+ voice models.

    Create your custom Talking Head for free.
    https://en.bomou.com/avatars/

    虚拟主播制作中文版 https://bomou.com/cn/va/

    Text to Video API:

    https://en.bomou.com/avatars/api?token={your token}
    &model_id={ your custom AI avatar id}
    &template_id={your custom AI avatar template/style id }
    &speaker_id={ the accent model id}
    &speaker_style={assistant,chat,customerservice,newscast,affectionate,angry,calm,cheerful,disgruntled,fearful,gentle,lyrical,sad,serious,poetry-reading }
    &speaker_speed={ slow or fast level: -10 to 10}
    &speaker_volume={ low or high level: -10 to 10}
    &speaker_tone={ pitch of the tone: -10 to 10 }
    &text={ video script, plain text or with some tags}
    &pos={the avatar position/scale on the background image or video}
    &bgurl={ background image or video url}
    &callback={callback this url at the end of video synthesis, video is ready for download}
    
    

    Audio to Video API:

    https://en.bomou.com/avatars/api?token={your token}
    &model_id={ your custom AI avatar id}
    &template_id={your custom AI avatar template/style id }
    &audio={audio url}
    &pos={the avatar position/scale on the background image or video}
    &bgurl={ background image or video url}
    &callback={callback this url at the end of video synthesis, video is ready for download}
    
    

    Callback URL:

    https://yourcallbackurl?downloadurl={the download url for generated video }
    
    

    Visit original content creator repository
    https://github.com/Bomou-AI/Talking-Head

  • pyoverleafbot

    Overleaf Automation Bot to Appear Active (pyoverleafbot)

    Overview

    pyoverleafbot is built to help users appear active on collaborative Overleaf projects. It automates interactions with Overleaf.

    Tech Stack

    • Python
    • Selenium

    What can this be used for?

    • For PhD Students: Helps manage stress
    • Coffee Break: Set up the bot to run during breaks to keep your presence active.
    • Scheduled Runs: Schedule the bot to run at specific times to maintain activity on projects.

    Why use Selenium rather than simple pyautogui?

    • Selenium is an automation tool
    • Selenium can interact directly with web applications in any browser
    • Selenium provides high level interaction with the web elements
    • Selenium can be used for web scraping
    • Selenium scripts can be used in Headless Mode

    Implementations

    • Platforms:
      • Windows (Currently only implemented for Windows OS)
        • Robust Login:
          • Windows Credential Manager (using email & password) + Store session information for faster login
          • Gmail login
        • Browsers:
          • Chrome
          • Others
        • Scheduling (in progress):
          • Scheduled Runs when power on (logged in/logged out)
          • Scheduled Runs when power off
        • Functionalities:
          • Fully automated
          • Manage credentials securely
          • Select project you want to work on
          • Appear active
          • Headless Mode
      • Linux (in progress)
      • Mac (in progress)

    One time setup

    • Prerequisites: Windows with Python and Chrome browser installed.
    • Clone the repository: git clone https://github.com/supersjgk/pyoverleafbot
    • cd pyoverleafbot
    • Install the dependencies: pip install -r requirements.txt
    • cd pyoverleafbot
    • Set Credentials in Windows Credential Manager by running: python credential_manager.py set OverleafBot
    • Run the script:
      • The Bot displays the available overleaf projects and prompts you to select a project: python script.py
      • To run the script in headless mode (Uses less resources, Browser GUI will not be displayed, the script still runs normally), use argument: --headless 1
      • If you already know the Overleaf Project ID: python script.py --project_id <Project ID>
      • If you want to appear active for x minutes (default 5 minutes), use the argument --duration <x>
      • The bot repeatedly selects a random line (every 5 to 10 seconds) in the project to appear active. To override default values, use the arguments: --min_change_time <min_seconds> --max_change_time <max_seconds>. It is recommended to set them to atleast 45 and 60, respectively to make it look more natural.

    Something not working?

    Visit original content creator repository
    https://github.com/supersjgk/pyoverleafbot

  • orbitaldump

    OrbitalDump

    A simple multi-threaded distributed SSH brute-forcing tool written in Python.

    image

    How it Works

    When the script is executed without the --proxies switch, it acts just like any other multi-threaded SSH brute-forcing scripts. When the --proxies switch is added, the script pulls a list (usually thousands) of SOCKS4 proxies from ProxyScrape and launch all brute-force attacks over the SOCKS4 proxies so brute-force attempts will be less likely to be rate-limited by the target host.

    Installation

    You can install OrbitalDump through pip.

    pip install -U --user orbitaldump
    orbitaldump

    Alternatively, you can clone this repository and run the source code directly.

    git clone https://github.com/k4yt3x/orbitaldump.git
    cd orbitaldump
    python -m orbitaldump

    Usages

    A simple usage is shown below. This command below:

    • -t 10: launch 10 brute-forcing threads
    • -u usernames.txt: read usernames from usernames.txt (one username per line)
    • -p passwords.txt: read passwords from passwords.txt (one password per line)
    • -h example.com: set brute-forcing target to example.com
    • --proxies: launch attacks over proxies from ProxyScrape
    python -m orbitaldump -t 10 -u usernames.txt -p passwords.txt -h example.com --proxies

    Full Usages

    You can obtain the full usages by executing OrbitalDump with the --help switch. The section below might be out-of-date.

    usage: orbitaldump [--help] [-t THREADS] [-u USERNAME] [-p PASSWORD] -h HOSTNAME [--port PORT] [--timeout TIMEOUT] [--proxies]
    
    optional arguments:
      --help                show this help message and exit
      -t THREADS, --threads THREADS
                            number of threads to use (default: 5)
      -u USERNAME, --username USERNAME
                            username file path (default: None)
      -p PASSWORD, --password PASSWORD
                            password file path (default: None)
      -h HOSTNAME, --hostname HOSTNAME
                            target hostname (default: None)
      --port PORT           target port (default: 22)
      --timeout TIMEOUT     SSH timeout (default: 6)
      --proxies             use SOCKS proxies from ProxyScrape (default: False)
    Visit original content creator repository https://github.com/k4yt3x/orbitaldump
  • MCMCDiagnostics.jl

    MCMCDiagnostics.jl

    MCMCDiagnostics.jl has been deprecated in favor of MCMCDiagnosticTools.jl and is no longer maintained.

    Markov Chain Monte Carlo convergence diagnostics in Julia.

    lifecycle build codecov.io

    Overview

    This package contains two very useful diagnostics for Markov Chain Monte Carlo:

    1. potential_scale_reduction(chains...), which estimates the potential scale reduction factor, also known as Rhat, for multiple scalar chains,

    2. effective_sample_size(chain), which calculates the effective sample size for scalar chains.

    These are intended as building blocks, to be used by other libraries, and were organized into a separate library for testing and DRY.

    Installation

    The package is registered. You can install it with

    Pkg.add("MCMCDiagnostics")

    Related

    You may find my other packages for MCMC interesting. See the documentation of DynamicHMC.jl for details.

    Bibliography

    Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical science, 457-472.

    Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2013). Bayesian data analysis (3rd edition). Chapman & Hall/CRC.

    Stan Development Team. (2017). Stan Modeling Language Users Guide and Reference Manual, Version 2.15.0. http://mc-stan.org

    Visit original content creator repository https://github.com/tpapp/MCMCDiagnostics.jl
  • CODER

    CODER

    CODER

    CODER: Knowledge infused cross-lingual medical term embedding for term normalization. Paper

    CODER++

    CODER++: Automatic Biomedical Term Clustering by Learning Fine-grained Term Representations. Paper

    Use the model by transformers

    Models have been uploaded to huggingface/transformers repo.

    from transformers import AutoTokenizer, AutoModel
    
    tokenizer = AutoTokenizer.from_pretrained("GanjinZero/UMLSBert_ENG")
    model = AutoModel.from_pretrained("GanjinZero/UMLSBert_ENG")

    English checkpoint: GanjinZero/coder_eng or GanjinZero/UMLSBert_ENG (old name)

    English checkpoint CODER++: GanjinZero/coder_eng_pp (with hard negative sampling)

    Multilingual checkpoint: GanjinZero/coder_all or GanjinZero/UMLSBert_ALL (discarded old name)

    Train your model

    cd pretrain
    python train.py --umls_dir your_umls_dir --model_name_or_path monologg/biobert_v1.1_pubmed

    your_umls_dir should contain MRCONSO.RRF, MRREL.RRF and MRSTY.RRF. UMLS Download path:UMLS.

    A small tool for load UMLS RRF

    from pretrain.load_umls import UMLS
    umls = UMLS(your_umls_dir)

    Test CODER or other embeddings

    CADEC

    cd test
    python cadec/cadec_eval.py bert_model_name_or_path
    python cadec/cadec_eval.py word_embedding_path

    MANTRA GSC

    Download the Mantra GSC and unzip the xml files to /test/mantra/dataset, run

    cd test/mantra
    python test.py
    

    MCSM

    cd test/embeddings_reimplement
    python mcsm.py

    DDBRC

    Only sampled data is provided.

    cd test/diseasedb
    python train.py your_embedding embedding_type freeze_or_not gpu_id
    • embedding_type should be in [bert, word, cui]
    • freeze_or_not should be in [T, F], T means freeze the embedding, and F means fine-tune the embedding

    Citation

    @article{YUAN2022103983,
    title = {CODER: Knowledge-infused cross-lingual medical term embedding for term normalization},
    journal = {Journal of Biomedical Informatics},
    pages = {103983},
    year = {2022},
    issn = {1532-0464},
    doi = {https://doi.org/10.1016/j.jbi.2021.103983},
    url = {https://www.sciencedirect.com/science/article/pii/S1532046421003129},
    author = {Zheng Yuan and Zhengyun Zhao and Haixia Sun and Jiao Li and Fei Wang and Sheng Yu},
    keywords = {medical term normalization, cross-lingual, medical term representation, knowledge graph embedding, contrastive learning}
    }
    @inproceedings{zeng-etal-2022-automatic,
        title = "Automatic Biomedical Term Clustering by Learning Fine-grained Term Representations",
        author = "Zeng, Sihang  and
          Yuan, Zheng  and
          Yu, Sheng",
        booktitle = "Proceedings of the 21st Workshop on Biomedical Language Processing",
        month = may,
        year = "2022",
        address = "Dublin, Ireland",
        publisher = "Association for Computational Linguistics",
        url = "https://aclanthology.org/2022.bionlp-1.8",
        pages = "91--96",
        abstract = "Term clustering is important in biomedical knowledge graph construction. Using similarities between terms embedding is helpful for term clustering. State-of-the-art term embeddings leverage pretrained language models to encode terms, and use synonyms and relation knowledge from knowledge graphs to guide contrastive learning. These embeddings provide close embeddings for terms belonging to the same concept. However, from our probing experiments, these embeddings are not sensitive to minor textual differences which leads to failure for biomedical term clustering. To alleviate this problem, we adjust the sampling strategy in pretraining term embeddings by providing dynamic hard positive and negative samples during contrastive learning to learn fine-grained representations which result in better biomedical term clustering. We name our proposed method as CODER++, and it has been applied in clustering biomedical concepts in the newly released Biomedical Knowledge Graph named BIOS.",
    }
    Visit original content creator repository https://github.com/GanjinZero/CODER
  • YeetMouse

    Visit original content creator repository
    https://github.com/AndyFilter/YeetMouse

  • ymate-module-fileuploader

    YMATE-MODULE-FILEUPLOADER

    Maven Central status LICENSE

    基于 YMP 框架实现的文件上传及资源访问服务模块,特性如下:

    • 支持文件指纹匹配,秒传;
    • 支持图片文件多种规则等比例压缩;
    • 支持视频文件截图;
    • 支持上传文件 ContentType 白名单过滤;
    • 支持主从负载模式配置;
    • 支持自定义响应报文内容;
    • 支持自定义扩展文件存储策略;
    • 支持跨域上传文件及用户身份验证;
    • 支持 MongoDB 文件存储;

    Maven包依赖

    <dependency>
        <groupId>net.ymate.module</groupId>
        <artifactId>ymate-module-fileuploader</artifactId>
        <version>2.0.0</version>
    </dependency>

    模块配置参数说明

    #————————————- # module.fileuploader 模块初始化参数 #————————————- # 节点标识符, 默认值: unknown ymp.configs.module.fileuploader.node_id= # 缓存名称前缀, 默认值: “” ymp.configs.module.fileuploader.cache_name_prefix= # 缓存数据超时时间, 可选参数, 数值必须大于等于0, 否则将采用默认 ymp.configs.module.fileuploader.cache_timeout= # 默认控制器服务请求映射前缀(不允许”https://github.com/”开始和结束), 默认值: “” ymp.configs.module.fileuploader.service_prefix= # 是否注册默认控制器, 默认值: true ymp.configs.module.fileuploader.service_enabled= # 是否开启代理模式, 默认值: false ymp.configs.module.fileuploader.proxy_mode= # 代理服务基准URL路径(若开启代理模式则此项必填), 必须以 http:// 或 https:// 开始并以”https://github.com/”结束, 如: http://www.ymate.net/fileupload/, 默认值: 空 ymp.configs.module.fileuploader.proxy_service_base_url= # 代理客户端与服务端之间通讯请求参数签名密钥, 默认值: “” ymp.configs.module.fileuploader.proxy_service_auth_key= # 上传文件存储根路径(根据存储适配器接口实现决定其值具体含义), 默认存储适配器取值: ${root}/upload_files ymp.configs.module.fileuploader.file_storage_path= # 缩略图文件存储根路径(根据存储适配器接口实现决定其值具体含义), 默认存储适配器取值与上传文件存储根路径值相同 ymp.configs.module.fileuploader.thumb_storage_path= # 静态资源引用基准URL路径, 必须以 http:// 或 https:// 开始并以”https://github.com/”结束, 如: http://www.ymate.net/static/resources/, 默认值: 空(即不使用静态资源引用路径) ymp.configs.module.fileuploader.resources_base_url= # 文件存储适配器接口实现, 若未提供则使用系统默认, 此类需实现net.ymate.module.fileuploader.IFileStorageAdapter接口 ymp.configs.module.fileuploader.file_storage_adapter_class= # 图片文件处理器接口实现, 若未提供则使用系统默认, 此类需实现net.ymate.module.fileuploader.IImageProcessor接口 ymp.configs.module.fileuploader.image_processor_class= # 资源处理器类, 用于资源上传、匹配及验证被访问资源是否允许(非代理模式则此项必填), 此类需实现net.ymate.module.fileuploader.IResourcesProcessor接口 ymp.configs.module.fileuploader.resources_processor_class= # 文件上传成功后是否自动执行生成图片或视频截图缩略图, 默认值: false ymp.configs.module.fileuploader.thumb_create_on_uploaded= # 是否允许自定义缩略图尺寸, 默认值: false ymp.configs.module.fileuploader.allow_custom_thumb_size= # 缩略图尺寸列表, 该尺寸列表在允许自定义缩略图尺寸时生效, 若列表不为空则自定义尺寸不能超过此范围, 如: 600_480|1024_0 (0表示等比缩放, 不支持0_0), 默认值: 空 ymp.configs.module.fileuploader.thumb_size_list= # 缩略图清晰度, 如: 0.70f, 默认值: 0f ymp.configs.module.fileuploader.thumb_quality= # 允许上传的文件ContentType列表, 如: image/png|image/jpeg, 默认值: 空, 表示不限制 ymp.configs.module.fileuploader.allow_content_types=

    示例代码:

    **示例一:**上传文件,以 POST 方式请求 URL 地址:

    http://localhost:8080/uploads/push

    参数说明:

    • file: 上传文件流数据;
    • type: 指定请求结果处理器,若未提供则采用默认,可选值: fileupload

    响应:

    • 未指定 type 参数时:
    {
        "ret": 0,
        "data": {
            "createTime": 1638200758000,
            "extension": "mp4",
            "filename": "a1175d94f245b9a142955b42ac285dc2.mp4",
            "hash": "a1175d94f245b9a142955b42ac285dc2",
            "lastModifyTime": 1638200758000,
            "mimeType": "video/mp4",
            "size": 21672966,
            "sourcePath": "video/a1/17/a1175d94f245b9a142955b42ac285dc2.mp4",
            "status": 0,
            "type": "VIDEO",
            "url": "http://localhost:8080/uploads/resources/video/a1175d94f245b9a142955b42ac285dc2"
        }
    }
    • 指定 type=fileupload 时:
    {
        "files": [
            {
                "size": 21672966,
                "name": "a1175d94f245b9a142955b42ac285dc2.mp4",
                "type": "video",
                "hash": "a1175d94f245b9a142955b42ac285dc2",
                "thumbnailUrl": "http://localhost:8080/uploads/resources/video/a1175d94f245b9a142955b42ac285dc2"
            }
        ]
    }

    **示例二:**文件指纹匹配,以 POST 方式请求 URL 地址:

    http://localhost:8080/uploads/match

    参数说明:

    • hash: 文件哈希值(MD5),必选参数;

    响应:

    若匹配成功则返回该文件的描述信息;

    {
        "ret": 0,
        "matched": true,
        "data": {
            "createTime": 1638200758000,
            "extension": "mp4",
            "filename": "a1175d94f245b9a142955b42ac285dc2.mp4",
            "hash": "a1175d94f245b9a142955b42ac285dc2",
            "lastModifyTime": 1638200758000,
            "mimeType": "video/mp4",
            "size": 21672966,
            "sourcePath": "video/a1/17/a1175d94f245b9a142955b42ac285dc2.mp4",
            "status": 0,
            "type": "VIDEO",
            "url": "http://localhost:8080/uploads/resources/video/a1175d94f245b9a142955b42ac285dc2"
        }
    }

    **示例三:**文件资源访问,以 GET 方式请求 URL 地址:

    http://localhost:8080/uploads/resources/{type}/{hash}

    参数说明:

    • type: 文件类型,必选参数,可选值范围:imagevideoaudiotextapplicationthumb

    • hash: 文件哈希值(MD5),必选参数;

    :若需要强制浏览器下载资源,只需在请求参数中添加?attach即可,并支持通过?attach=<FILE_NAME>方式自定义文件名称(文件名称必须合法有效,不能包含特殊字符,否则将使用默认文件名称)。

    One More Thing

    YMP 不仅提供便捷的 Web 及其它 Java 项目的快速开发体验,也将不断提供更多丰富的项目实践经验。

    感兴趣的小伙伴儿们可以加入官方 QQ 群:480374360,一起交流学习,帮助 YMP 成长!

    如果喜欢 YMP,希望得到你的支持和鼓励!

    Donation Code

    了解更多有关 YMP 框架的内容,请访问官网:https://ymate.net

    Visit original content creator repository https://github.com/suninformation/ymate-module-fileuploader